How an Organism’s Genotype Determines Its Phenotype

- An organism’s *genotype* is its genetic makeup, the sequence of nucleotide bases in DNA.
- The *phenotype* is the organism’s physical traits, which arise from the actions of a wide variety of proteins.

DNA specifies the synthesis of proteins in two stages:

1. **transcription**, the transfer of genetic information from DNA into an RNA molecule and
2. **translation**, the transfer of information from RNA into a protein.
How an Organism’s Genotype Determines Its Phenotype

- The major breakthrough in demonstrating the relationship between genes and enzymes came in the 1940s from the work of American geneticists George Beadle and Edward Tatum with the bread mold *Neurospora crassa*.

- Beadle and Tatum
 - studied strains of mold that were unable to grow on the usual growth medium,
 - determined that these strains lacked an enzyme in a metabolic pathway that synthesized arginine,
 - showed that each mutant was defective in a single gene, and
 - hypothesized that the function of an individual gene is to dictate the production of a specific enzyme.
The one gene–one enzyme hypothesis has since been modified.

The function of a gene is to dictate the production of a polypeptide.

A protein may consist of two or more different polypeptides.

Genetic information in DNA is

- transcribed into RNA, then
- translated into polypeptides,
- which then fold into proteins.

What is the language of nucleic acids?

- In DNA, it is the linear sequence of nucleotide bases.
- A typical gene consists of thousands of nucleotides in a specific sequence.

When a segment of DNA is transcribed, the result is an RNA molecule.

RNA is then translated into a sequence of amino acids in a polypeptide.
From Nucleotides to Amino Acids: An Overview

- Experiments have verified that the flow of information from gene to protein is based on a triplet code.

- A **codon** is a triplet of bases, which codes for one amino acid.

The Genetic Code

- The **genetic code** is the set of rules that convert a nucleotide sequence in RNA to an amino acid sequence.

- Of the 64 triplets,
 - 61 code for amino acids and
 - 3 are stop codons, instructing the ribosomes to end the polypeptide.
The Genetic Code

- Because diverse organisms share a common genetic code, it is possible to program one species to produce a protein from another species by transplanting DNA.

Transcription: From DNA to RNA

- Transcription
 - makes RNA from a DNA template,
 - uses a process that resembles the synthesis of a DNA strand during DNA replication, and
 - substitutes uracil (U) for thymine (T).
Transcription: From DNA to RNA

- RNA nucleotides are linked by the transcription enzyme RNA polymerase.
Initiation of Transcription

- The “start transcribing” signal is a nucleotide sequence called a **promoter**, which is
 - located in the DNA at the beginning of the gene and
 - a specific place where RNA polymerase attaches.
- The first phase of transcription is initiation, in which
 - RNA polymerase attaches to the promoter and
 - RNA synthesis begins.

RNA Elongation

- During the second phase of transcription, called elongation,
 - the RNA grows longer and
 - the RNA strand peels away from its DNA template.

Termination of Transcription

- During the third phase of transcription, called termination,
 - RNA polymerase reaches a special sequence of bases in the DNA template called a **terminator**, signaling the end of the gene,
 - polymerase detaches from the RNA and the gene, and
 - the DNA strands rejoin.

The Processing of Eukaryotic RNA

- In the cells of prokaryotes, RNA transcribed from a gene immediately functions as **messenger RNA (mRNA)**, the molecule that is translated into protein.
- The eukaryotic cell
 - localizes transcription in the nucleus and
 - modifies, or processes, the RNA transcripts in the nucleus before they move to the cytoplasm for translation by ribosomes.
RNA processing includes
- adding a **cap** and **tail** consisting of extra nucleotides at the ends of the RNA transcript,
- removing **introns** (noncoding regions of the RNA), and
- RNA splicing, joining **exons** (the parts of the gene that are expressed) together to form **messenger RNA** (mRNA).

RNA splicing is believed to play a significant role in humans
- in allowing our approximately 21,000 genes to produce many thousands more polypeptides and
- by varying the exons that are included in the final mRNA.

Translation is the conversion from the nucleic acid language to the protein language.
<table>
<thead>
<tr>
<th></th>
<th>Replication</th>
<th>Transcription</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td>DNA</td>
<td>DNA</td>
<td>RNA</td>
</tr>
<tr>
<td>Polymer synthesized</td>
<td>DNA</td>
<td>RNA</td>
<td>Polypeptide</td>
</tr>
<tr>
<td>Monomer</td>
<td>nucleotide (deoxyribose)</td>
<td>nucleotide (ribose)</td>
<td>Amino acid</td>
</tr>
<tr>
<td>Polymerizing enzyme</td>
<td>DNA polymerase</td>
<td>RNA polymerase</td>
<td>ribosome</td>
</tr>
<tr>
<td>initiation site</td>
<td>origin of replication</td>
<td>promoter</td>
<td>start site</td>
</tr>
<tr>
<td>termination site</td>
<td>none</td>
<td>terminator</td>
<td>1 of 3 stop codons</td>
</tr>
</tbody>
</table>

Messenger RNA (mRNA)

- Translation requires
 - mRNA,
 - ATP,
 - enzymes,
 - ribosomes, and
 - transfer RNA (tRNA).
Transfer RNA (tRNA)

- Transfer RNA (tRNA)
 - acts as a molecular interpreter,
 - carries amino acids, and
 - matches amino acids with codons in mRNA using **anticodons**, a special triplet of bases that is complementary to a codon triplet on mRNA.

Ribosomes

- Ribosomes are organelles that
 - coordinate the functions of mRNA and tRNA and
 - are made of two subunits.
- Each subunit is made up of
 - proteins and
 - a considerable amount of another kind of RNA, **ribosomal RNA (rRNA)**.
- A fully assembled ribosome holds tRNA and mRNA for use in translation.
Translation: The Process

- Translation is divided into three phases:
 1. initiation,
 2. elongation, and
 3. termination.
Initiation

- Initiation brings together
 - mRNA,
 - the first amino acid with its attached tRNA, and
 - two subunits of the ribosome.
- The mRNA molecule has a cap and tail that help the mRNA bind to the ribosome.

Initiation occurs in two steps.
1. An mRNA molecule binds to a small ribosomal subunit, then a special initiator tRNA binds to the **start codon**, where translation is to begin on the mRNA.
2. A large ribosomal subunit binds to the small one, creating a functional ribosome.
Elongation

- Elongation occurs in three steps.
 - **Step 1: Codon recognition.** The anticodon of an incoming tRNA pairs with the mRNA codon at the A site of the ribosome.

– Step 2: Peptide bond formation.
 - The polypeptide leaves the tRNA in the P site and attaches to the amino acid on the tRNA in the A site.
 - The ribosome catalyzes the bond formation between the two amino acids.
Elongation

- **Step 3: Translocation.**
 - The P site tRNA leaves the ribosome.
 - The tRNA carrying the polypeptide moves from the A to the P site.

Termination

- Elongation continues until
 - a **stop codon** reaches the ribosome’s A site,
 - the completed polypeptide is freed, and
 - the ribosome splits back into its subunits.
Review: DNA → RNA → Protein

- In a cell, genetic information flows from
 - DNA to RNA in the nucleus and
 - RNA to protein in the cytoplasm.
Review: DNA → RNA → Protein

- As it is made, a polypeptide
 - coils and folds and
 - assumes a three-dimensional shape, its tertiary structure.

- Transcription and translation are how genes control the structures and activities of cells.
Mutations

- A **mutation** is any change in the nucleotide sequence of DNA.
- Mutations can change the amino acids in a protein.
- Mutations can involve
 - large regions of a chromosome or
 - just a single nucleotide pair, as occurs in sickle-cell disease.

Types of Mutations

- Mutations within a gene can be divided into two general categories:
 1. nucleotide substitutions (the replacement of one base by another) and
 2. nucleotide deletions or insertions (the loss or addition of a nucleotide).
- Insertions and deletions can
 - change the reading frame of the genetic message and
 - lead to disastrous effects.
Figure 10.22a

(a) Base substitution

Figure 10.22b

(b) Nucleotide deletion

Figure 10.22c

(c) Nucleotide insertion

Mutations

- (1) Wild-type gene
 - The big red pig ate the red rag.
- (2) Base substitution
 - The big res pig ate the red rag.
- (3) Base addition
 - The big res dpi gat eth ere dra g.
- (4) Base deletion
 - The big re-p iga tet her edr ag.

3 and 4 are known as frameshift mutations since everything after the mutation is shifted and would likely code for a new sequence of AAs.
Mutagens

- Mutations may result from
 - errors in DNA replication or recombination or
 - physical or chemical agents called **mutagens**.
- Mutations
 - are often harmful but
 - are useful in nature and the laboratory as a source of genetic diversity, which makes evolution by natural selection possible.

VIRUSES AND OTHER NONCELLULAR INFECTIOUS AGENTS

- Viruses share some, but not all, characteristics of living organisms. Viruses
 - possess genetic material in the form of nucleic acids wrapped in a protein coat,
 - are not cellular, and
 - cannot reproduce on their own.

Animal Viruses

- Viruses that infect animals cells
 - are a common cause of disease and
 - may have RNA or DNA genomes.
- Many animal viruses have an outer envelope made of phospholipid membrane, with projecting spikes of protein.
ERROR: stackunderflow
OFFENDING COMMAND: ~
ERROR: stackunderflow